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A previous report had shown that anthracene hydride AH- or 
the xanthenyl anion X-, respectively, at first add to the carbonyl 
group of N-benzoylaziridines since high yields of benzoyl dihy- 
droanthracene 3 or benzoyl xanthene 11 were obtained when in 
early stages the reaction was quenched with protons. The respec- 
tive intermediate carbonyl adducts 2 and 10 had been considered 
to be precursors of products resulting from homolysis of the azir- 
idine ring. It is now shown that quenching of the reaction between 
AH- or X- and N-benzoylaziridines la, b with methyl iodide or 
aroyl chlorides results in substantial yields of products derived 
from either AH' (or X-) or 1 a, b. This indicates that 2 (or 10) 
are in equilibrium with AH- (or X-) and la ,  b. Study of the gegen 
ion influence with X- revealed that the equilibrium concentra- 
tions of IO-Na+ were much lower than those of lO-Li+ while 
simultaneously the ring opening of l a  was distinctly faster with 
X-Na+ than with X-LP. This finding suggests that, contrary to 
the previous assumption, the equilibrium concentrations of X- 
and 1 a are responsible for the (homolytic) ring opening. 

A recent 3, paper reported a homolytic ring opening of N- 
acylaziridines by anthracene hydride AH- (or xanthenyl 
anion X-). It was assumed that single electron tranfer (SET) 
forms the radical AH' (or X') and the ketyl of the N-acyl- 
aziridine. A non-aromatic ketyl was thought to undergo 
homolytic opening immediately. Since N-aroylaziridines 
first formed a carbonyl adduct (2a, b and analogues), the 
respective aromatic ketyls were supposed to combine with 
AH' or X' in a reversible manner. This two-step formation 
of the carbonyl adduct was favoured over the classic ionic 
mechanism. We now present results showing clearly that 
AH- (X-) and N-aroylaziridines form the carbonyl adducts 
2a, b (10) reversibly and in a classic ionic mechanism. The 
equilibrium involved lies heavily on the side of the adducts 
as previously3) shown by 94% isolated yield of the ketone 
3 (or 83% of ketone 11, 14% of l a  not converted) under 
conditions of time and temperature (5 minutes at -65°C 
or going from - 65 "C to room temperature during 50 min- 
utes) that were insufficient for ring cleavage of 1 a. However, 
the mere existence of this equilibrium opens the possibility 
of an alternative mechanism producing the required ketyl 

Reaktheo  mit Aziridilrea, 45'). - Arenhydrlde, 52? - Reversi- 
biUtiit des Carboayl.ngrif€s bei N-Beazoyhziridha vor der Ring- 
6ffnuag dwch Carbaniwea. - Starker Gegeoioa-EienoS 
Ein friiberer Bericht hatte gezeigt, daf3 Anthracenhydrid AH- 
bzw. das Xanthenylanion X- zuerst die Carbonyfgmppe von N- 
Benzoylaziridinen angreifen, da in friihen Stadien der Reaktion 
ein Abstoppen mit Protonen hohe Ausbeuten an Benzoyldihy- 
droanthracen 3 bzw. Benzoylxanthen 11 liefert. Die entsprechen- 
den Carbonyladdukt-Zwischenstufen 2 und 10 waren als Vorlau- 
fer von Produkten angesehen worden, die aus einer Homolyse des 
Aziridinringes hervorgehen. Es wird jetzt gezeigt, dao Abstoppen 
der Reaktion zwischen AH- bzw. X- und den N-BenzoylaZiri- 
dinen la, b mit Methyliodid oder Aroylchloriden hohe Ausbeuten 
an Produkten ergibt, die sich von AH- (bzw. X-) oder la,b 
ableiten. Dies zeigt an, daB 2 (bzw. 10) im Gleichgewicht mit AH- 
(bzw. X-) und la, b stehen. Untersuchung des Gegenion-Einflus- 
ses bei X- ergab, daD die Gleichgewichtskonzentrationen an 10- 
Na+ vie1 niedriger waren als. diejenigen an lO-Li+, wahrend 
gleichzeitig die Ringbffnung von 1 a mit X-Na+ deutlich schneller 
war als mit X-Li+. Dieser Befund legt die Vermutung nahe, daB 
im Gegensatz zur friiheren Annahme die Gleichgewichtskonzen- 
trationen an X- und 1 a Tur die (homolytische) Ringbffnung ver- 
antwortlich sind. 

by SET between the small equilibrium concentrations of 
AH- (or X-) and N-aroylaziridine. 

The high yields of ketones 3 and 11 were obtained when 
the reaction between AH- or X-, respectively, and l a  or 
other N-benzoylaziridines') was quenched with acid. Since 
protonation of all anions occurs practically instantaneously, 
the yields of 3 and 11 can be taken as the percentage of 
carbonyl adducts 2 (or 10 and analogues) present at the 
moment of quenching. Substitution of more slowly reacting 
and discriminating electrophiles for the rapid and non-dis- 
criminating proton could be a means for detecting and cap- 
turing AH- (or X-), a very high ranking nucleophile. This 
is indeed born out by the experiments of Table 1 when short 
reactions prior to quenching with an electrophile prevented 
aziridine ring cleavage by AH-. 

In run 1 of Table 1 the reaction between AH- and l a  
was quenched with a large excess of methyl iodide. This 
provided a quantitative formation of methyldihydroanthra- 
cene 5 along with a high yield of oxazoline 6. Clearly, methyl 
iodide is very good for trapping both species on the left side 
of the upper equilibrium in Scheme 1, i. e. AH- as well as 
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1 a, the latter by the well-known4) iodide-ion-catalyzed iso- 
merization 1 a +  6 (Scheme 1). 

Scheme 1 
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AH-, X -  = carbanions 
AH,, XH = conjugate acids 
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Table 1. Reactions of AH-Li+ with la ,b quenched with electro- 
philes 

1 7.5 5 5, Is 50-60, 1 5 s  3 0 s  0 (100)5,(87)6 

2 6.25 5 4.88. I b  5, 7'' 7 min 0 0 5l/3, 3p.  8 l / l b  
3 6.25 5 4.79, I b  5, 8'' 5 rnin 5 min 2 h 69/4, 58/9, 30/ 

Me1 

I b  

a) Dropwise addition of la ,  b during time t , .  After subsequent time 
t2 the electrophile was added, at once in run 1, during 5 min in runs 
2 and 3. f3 = time for the reaction with the electrophile. All steps 
were performed at  room temperature. - b, Yields in parentheses: 
'H-NMR analysis. - ') Dissolved in 10 ml of THF. 

'For 1 b, in the reaction with AH-, protonic quenching 
had also shown3) that in the early stages of the reaction the 
predominant species (56% after 25 minutes at room tem- 
perature, 15% of l b  not converted) is the carbonyl adduct 
2 b. When this reaction of 1 b with AH- was quenched with 
benzoyl chloride (7) (run 2), 83% of 1 b was recovered and 
3% of 1 b was converted into 9 by chloride ion attack. 50% 
of the expected 3 was isolated. That 3 came from the reaction 
of 7 with AH- of the second equilibrium in Scheme 1 was 
proven by run 3 that had been quenched with p-toluoyl 
chloride (8). Here, the respective ketone 4 was isolated. Due 
to the longer time for reaction in this run, much more of 1 b 
had been converted into 9, the sum of 9 and recovered 1 b 

being the same as in run 2. Formation of the corresponding 
oxazoline from 9 is retarded since the poorly nucleofugal 
chloride ion would have to be replaced in this cyclization 
and/or since this cyclization would suffer from steric hin- 
drance. 

Scheme 2 
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13 R=Me 

14 A= Ph 15 R'= H 
R'= (CH,),NHCOPh 

16 R'= R'= (CH,),NHCOPh 

PhCONHEt 

13 

Table 2. Reactions of X-Li+ and X-Na+ with 5 mmol of l a  in 
T H F ~ )  

Run [mmol] [mmol] Temperafurebl Products 
XH Base and time" % yield*' 

1 5 5 BuLi rt, 30 s4 (87) 6, (100) 12 
2 10 7.5 NaNH, -65"C-rt. 14/11, 3/15, 43/13, 5/14 

3 10 7.5 NaNH, -65'C-rl. 3/11, 14/15. (trace) 16, (20) la ,  

4 10 7.5 NaNHl rt, 65 min 30/11. 7/15, 13/13, 24/14 
5 10 7.5 NaNH, rt, 20 h (trace) 11, (60) 15, (20) 16, (3) 17, 

6 10 7.5 BuLi rt, 20 h 74/11, (18) 15, ( 5 )  16. ( 6 3 )  17 
7 1.5 6.25 BuLi rt, 14 d 0/11, (54) IS. (35) 16. ( 1 1 )  17 

50 min 

50 min 20/13, 14/14 

(7) 14 

a) 90-120 ml of THF. - b, rt = room temperature. - Except 
for run 1, the reactions were quenched with about one equivalent 
(with an excess in run 2) of glacial acetic acid. - d, Yields in pa- 
rentheses: 'H-NMR analysis. - ') Run l was quenched with 50-60 
mmol of MeI. 

In some reactions of X- with l a  (Scheme 2, Table 2)  the 
influence of the gegen ion, Li+ or Na+, was studied. Cap- 
turing X- and l a  with methyl iodide (run 1) provided a 
result quite analogous to that of the AH- reaction in 
Table 1 (entry 1). Together with the reported3' protically 
quenched experiment (vide supra), this result establishes a 
classic ionic carbonyl attack and its reversibility. However, 
when the reported3) reaction with protic quenching was re- 
peated with X-Na+ (runs 2 and 3 in Table 2), the yield of 
11 dropped from the reported 83% to 14% or 3%, respec- 
tively,' in favor of unreacted 1 a and its artifacts 13 and 14. 
The acetate 13 arises from l a  and the acetic acid that was 
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injected t o  quench the reaction. This conversion 1 a+ 13 
depends on the amount  of acetic acid as well as on time and 
temperature during workup. We assume that  14 is formed 
analogously from l a  and benzoic acid, but it is not  clear 
how benzoic acid can arise from 1 a under the conditions of 
the reaction and/or the workup. Besides the low yield of 11, 
the isolation or detection of ring-opened products 15 and 
16 is noteworthy since no ring opening had been observed 
under the same conditions” with X-Li+ (vide supra). 

Obviously, there is a marked influence of the gegen ion 
on the carbonyl attack, either on the reaction rate o r  on the 
equilibrium, or on both. Favoring the formation or increas- 
ing the equilibrium concentration of 10 by X-Li+ as com- 
pared t o  X-Na+ is no t  unexpected when one considers the 
similarities of organolithium and organomagnesium com- 
pounds. Bad kinetics or thermodynamics of 10 as result of 
Na+ imply higher concentrations of X- and la,  thus ac- 
celerating ring opening of 1 a irrespective of the mechanism, 
SN2 o r  SET. These tendencies, i. e. less formation of 10 a n d  
faster ring opening when Na+ is the gegen ion, are also 
observed in the room temperature reactions (runs 4 a n d  5). 
Particularly impressive is the comparison of the two 20- 
hours experiments (runs 5 a n d  6) that  were performed under 
precisely the same conditions except for the choice of the 
gegen ion: with N a +  (run 5) a total (15 + 16 + 17) of 83% 
ring opening and n o  ketone 11 was found, with Li+ (run 6) 
a total of 26% ring opening and 74% of 11. The long-time 
run 7 secured that 10, the precursor of 11, is completely 
converted into ring-opened products even with Li’ as gegen 
ion. The  detection of N-ethylbenzamide (17) in runs 5-7, 
both with Li+ and Na+, confirms the proposed” homolytic 
ring opening. The tendency of X- t o  form mono (15) and 
bis(amidoethy1) derivatives (16) in comparable yields has 
been reported previously5.’). 

We have not  performed corresponding experiments with 
AH-Na+, but  it appears reasonable t o  assume a similar 
influence of the gegen ion in reactions with AH-. Since the 
observed reversibility of carbonyl attack may be a general 
phenomenon in aziridine chemistry, it may be worthwile to  
reinvestigate known 6, carbonyl reactions of N-acylaziridines 
under aprotic conditions using acyl groups COR whose R 
cannot  be eliminated from the carbonyl adduct. 

This work was supported by the Deutsche Forschungsgemein- 
schaft and by the Fonds der Chemischen Industrie. This support is 
gratefully acknowledged. 

Experimental 
General Methods and Materials: See ref.’’, e. g. spectroscopy, 

chromatography on silica gel (column dimensions in cm), TLC and 
preparative TLC, purification of THF, reaction conditions (contin- 
uous stirring under purified nitrogen for all reactions). Aziridines 
l a ,  b have been described previously (see ref.’)). 

Reactions with AH-Li+ or X-Li+: The solution of AH2 or XH 
in 50- 70 ml of THF was cooled to freezing of THF, and then BuLi 
(solution in hexane, concentration determined by Gilman double 
titration) was added. When the mixture had reached room tem- 
perature, 1 a, b (dissolved in 20 ml of THF) were added dropwise. 
Reaction time and mode of quenching are given in Table 1. 

Reactions with X-Na+:  The solution of XH in 70-100 ml of 
THF was refluxed for 2 - 3 hours’) with sodium amide dispersion 
(500/, in toluene) under nitrogen. After cooling to room temperature 
or to -65°C (dry ice/methanol’)), respectively, the solution of l a  
in 20 ml of THF was added dropwise within 5 minutes. The mixture 
was allowed to stand without cooling or heating for the time given 
in Table 2. Then the glacial acetic acid was added. 

Workup: The solvent was removed under reduced pressure and 
the residue taken up in CH2Clz and washed with water. Evaporation 
of the organic layer provided a residue whose further treatment is 
given below for each run. 

Table I ,  run I: ‘H-NMR analysis of the residue indicated 450 mg 
of (excess) AH2, 980 mg (100Y0) of 5, and 640 mg (87%) of 6 by 
comparison with’ authentic samples, that were prepared (5) from 
AH2 with an excess of both BuLi and Me1 in THF or (64,7)) pro- 
longed heating of l a  to more than 120°C. - 5 :  ‘H NMR (CDCI,, 
250 MHz): 6 = 1.38(d, J = 6.2 Hz, Me), 3.81 (d, J = 18.5 Hz, 10- 
H pseudo eq), 3.98 (q, J = 7.2 Hz, 9-H pseudo eq), 4.06 (d, J = 
18.5 Hz, 10-H pseudo ax), 7.10-7.30(m, 8 aromatic H); these data 
agree reasonably well with those reported previously’) from a 
60-MHz spectrum. - 6 ‘H NMR (CDClp, 250 MHz): 6 = 3.99 
(mc, t-like, “s’ ca. 9.5 Hz, NCH2), 4.34 (mc, t-like, “S’ ca. 9.5 Hz, 
OCH2), 7.37-7.57 (m, m-H and p-H of Ph), 7.91-7.98 (m, o-H 
of Ph). 

Table I ,  run 2: Chromatography (70 x 1.5, toluene) yielded 
673 mg of hydrocarbons (mainly AH2), 640 mg of 33), 185 mg of a 
mixture consisting (‘H NMR) of 70 mg of 3 (total 710 mg, 51%) 
and115mgof1b,1126mgoflb(total1241 mg,81Y0),and53mg 

N - ( I  -Benzyl-2-chloro-2-phenethyl)benzamide (9): M. p. 158 to 
160°C. - ‘H NMR (CDCI’, 250 MHz): 6 = 3.09 (mc, 2 benzylic 
H), 4.86 (mc, NCH), 5.14 (d, J = 3.4 Hz, CICH), 6.44 (d, br, J = 
8.9 Hz, NH), 7.21 -7.38 (m, 2 Ph), 7.38-7.54 (m, m-H and p-H of 
benzoyl), 7.65-7.72 (m, o-H of benzoyl). - IR (KBr): 3320 cm-’ 
(NH), 1641 (amide I), 1538 (amide 11). 

C22H20CIN0 (349.8) Calcd. C 75.52 H 5.76 N 4.00 
Found C 75.47 H 5.65 N 4.27 

(3%) of 9. 

Table 1, run 3: Chromatography (90 x 1.5) with toluene yielded 
568 mg of hydrocarbons (mainly AH2), 989 mg (69%) of 4, and 
450 mg (30%) of 1 b. Elution with dichloromethane/ethyl acetate 
(8: 1) provided 969 mg (58Y0) of 9. 

9-(p-Toluoyl)-9,fO-dihydroanthracene (4): M. p. 109- 110°C (pe- 
troleum ether, b.p. 40-60°C). - ‘H NMR (CDC13, 250 MHz): 
6 = 2.41 (s, Me), 3.94 (d, J = 18.5 Hz, 10-H pseudo eq), 4.51 (d, 
J = 18.5 Hz, 10-H pseudo ax), 5.98 (s, 9-H pseudo eq), 7.08-7.41 
(m, 10 aromatic H), 7.94-8.02 (m, 2 o-H of aroyl). - IR (KBr): 
1669 cm-’ (C=O). 

C22H180 (298.4) Calcd. C 88.56 H 6.08 
Found C 88.28 H 6.16 

Table 2. run I: ‘H-NMR analysis of the residue indicated 640 mg 
(87%) of 6 and 980 mg (100%0) of 12 by comparison with authentic 
samples. Sample of 6 vide supra. The sample of 12 was prepared 
from XH with an excess of both BuLi and Me1 in THF. -12: ‘H 
NMR (CDCI’, 250 MHz): 6 = 1.47 (d, J = 7.5 Hz, Me), 4.07(q, 
J = 7.5 Hz, 9-H), 7.03-7.09 (m, 4 aromatic H), 7.17-7.27 (m, 4 
aromatic H). These data agree reasonably well with those reported 
previously9) from a 60-MHz spectrum. 

Table 2,  run 2: Chromatography (20 x 3) yielded (with toluene) 
1718 mg of mixture A and (with ethyl acetate) 802 mg of mixture 
B. Chromatography (70 x 1.5, toluene) of mixture A provided 

Chem. Ber. 121, 1349-1352 (1988) 



1352 T. Mall, H. Stamm 

1470 mg of X H  and 204 mg (14%) of l l 3 ) .  Chromatography (70 x 
1.5) of mixture B with dichloromethane/ethyl acetate (10: 1) pro- 
vided 101 mg of mixture C; subsequent elution with dichlorome- 
thanelethyl acetate (2.7: 1) yielded 446 mg (43%) of 13. Preparative 
TLC of mixture C with dichloromethane/ethyl acetate (10: 1) 
yielded 37 mg (6%) of 14 and 46 mg of 15” (upper zone). 

2-(Benzoylamino)ethyl Acetate (13): M. p. 45-46°C. - ’H  
NMR (CDC13, 250 MHz): 6 = 2.05 (s, Me), 3.65-3.72 (m, q-like, 
NCHJ, 4.26 (mc, t-like, “S’ ca. 5.6 Hz, OCH2), 7.07 (s, br, NH), 
7.36-7.48 (m, m-H and p-H of benzoyl), 7.77-7.80 (m, o-H of 
benzoyl). - IR (KBr): 3360cm--’ (NH), 1735 (0 -C=O) ,  1642 
(amide I), 1534 (amide 11). 

CI1HI3NO3 (207.2) Calcd. C 63.75 H 6.32 N 6.76 
Found C 64.01 H 6.45 N 6.60 

2-(Benzoylamino)ethyl Benzoate (14): M. p. 85- 88°C (ref.’” 
88-89°C). - ‘H NMR (CDC13, 250 MHz): 6 = 3.80-3.86 (m, q- 
like, NCH2), 4.52 (mc, t-like, “S’ ca. 5.5 Hz, OCH2), 6.97 (s, br, NH), 
7.35-7.58 (m, m-H and p-H of 2 benzoyl), 7.76-7.80 (m, o-H of 
N-benzoyl), 8.01 -8.05 (m, o-H of U-benzoyl). - IR (KBr): 
3260 cm-’ (NH), 1723 ( 0 - C = O ) ,  1641 (amide 11), 1563 (amide 
11). 

C l6HI5No3  (269.3) Calcd. C 71.36 H 5.61 N 5.20 
Found C 71.25 H 5.62 N 5.01 

Table 2,  run 3: Chromatography (20 x 3) provided (with toluene) 
1755 rng of mixture A and (with ethyl acetate) 535 mg of mixture 
B. Chromatography (70 x 1.5) of mixture A yielded (toluene) 
1632 mg of XH, (toluene) 39 mg (3%) of 11, and (dichloromethane/ 
ethyl acetate, 3.7:l) 34 mg of l a .  Chromatography (70 x 1.5) of 
mixture B with dichloromethane/ethyl acetate (10: 1) provided 
71 mg of l a ,  a mixture consisting of (IH NMR, 90 MHz) 39 mg of 
l a  (i.e. summed up to 144 mg, 20%) and 41 mg of 15, 30 mg of 15 
(i.e. summed up to 71 mg, 14%) containing a trace (‘H NMR, 
250 MHz) of 16”, and 92 mg (14%) of 14. Further elution with 
dichloromethane/ethyl acetate (3.7: 1) yielded 208 mg (20%) of 13. 

Table 2, run 4: Chromatography (20 x 3) provided (toluene) 
1862 mg of mixture A and (ethyl acetate) 543 mg of mixture B. 
Chromatography (70 x 1.5, toluene) of mixture A yielded 1198 mg 
of X H  and 441 mg (30%) of 11. Preparative TLC (dichloromethane/ 
ethyl acetate, 1O:l) of mixture B provided (from top to bottom) 
112 mg (7%) of 15, 158 mg (24%) of 14, and 132 mg (13%) of 13. 

Table 2, run 5: Chromatography (60 x 1.5) with toluene provided 
1028 mg of X H  and 42 mg of a fraction that contained a trace of 

11. Further elution with dichloromethane/ethyl acetate (1 : 1) pro- 
vided 1294 mg of a mixture consisting (‘H NMR, 250 MHz) of 
47 mg (7%) of 14, 987 mg (60%) of 15, 238 mg (20%) of 16, and 
22 mg (3%) of 173’. 

Table 2,  run 6: Chromatography (60 x 1.5) with toluene provided 
891 mg of X H  and 1059 mg (74%) of 11. Further elution with 
dichloromethane/ethyl acetate (1.5: 1) yielded 378 mg of a mixture 
consisting (‘H NMR, 250 MHz) of 296 mg (18%) of 15,60 mg (So/,) 
of 16, and ,< 22 mg (,< 3%) of 17. 

Table 2, run 7: Chromatography (20 x 3) yielded (toluene) 
919 mg of X H  and (ethyl acetate) 1386 mg of a mixture consisting 
(‘H NMR, 250 MHz) of 888 mg (54%) of 15,416 mg (35%) of 16, 
and 82 mg (1 1 Yo) of 17. 

CAS Registry Numbers 

l a :  7646-66-4 / 1 b: 98943-70-5 1 3 :  50688-77-2 j 4: 41 199-48-8 / 5 :  
17239-99-5 / 6: 7127-19-7 j 7 :  98-88-4 j 8: 874-60-2 j 9: 113893- 
59-7 / 11: 98943-92-1 / 12: 77680-69-4 / 13: 92367-87-8 / 14: 16180- 
99-7 / 15: 70686-42-9 / 16: 70650-93-0 / 17: 614-17-5 / AH21 613- 
31-0 / XH: 92-83-1 
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